Effect of sea-dykes on tsunami run-up

Kao-Shu Hwang Chen-Chi Liu Hwung-Hweng Hwung

Tainan Hydraulics Laboratory National Cheng-Kung University Tainan

TAIWAN.

Outline

- Introduction
 - tsunami research in THL after the 2004 Indian Ocean tsunami
 - The motivation and the objectives of present study
- Preliminary results
- Ongoing experiments
- Future works

Experimental set-up

Surface wave profiles after breaking

 R/h_0 vs. H/h_0

About 1/3 coastline is protected

- coast length 1,141 km with 369.8 km protected by sea-dykes or revetments
- design wave conditions:
 - West coast
 - $-H_{1/3}$:4-6 m, $T_{1/3}$:8-10 s
 - East coast
 - $-H_{1/3}$:10-14 m, $T_{1/3}$:10-16 s
- crown levels of sea dykes or revetments
 - West coast
 - −E.L. +4~ +6 m
 - East coast

—E.L. +8~+10 m

A typical coastal landscape of Taiwan Seafloor bathymetry source: NCOR, TAIWAN

Transport, Japan

A report about the role of sea-dykes (revetments) in the 2004 tsunami attack

- However, on Male Island, which is the national capital of the Republic of Maldives, revetments and other structures have been constructed around the relatively unaffected by the Sumatra tsunami because these revetments helped protect the island from inundation. National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure and

State of tsunami wave runup with and without revetment

National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure and Transport, Japanna Hydraulics Lab. (THL)

The objectives

- Tsunami run-up and overflow when there are sea-dykes (revetments) protecting the coast
- Hydrodynamics around the sea dykes (revetments) and the overflow field in a tsunami attack

Preliminary results

by taking advantage of consulting projects that originally aimed to investigate the stability of sea-dykes under storm wave conditions

- The flume
 - \cdot 200 m×2 m×2 m
- The wave maker
 - Servo-electrical piston type
 - Stroke: 1.0 m
 - Max. 0.4 m solitary wave height under 1.0 m water depth

A typical sea-dyke profile of the east coast

The mean overflow rate

overflow height(m)

The mean overflow rate

 $q = 0.55 \times \sqrt{gh} \times h \quad (m^3/m/s)$

Where h is the overflow height

• by Takanashi and Yamamoto (2005)

Computation domain

-1₁ 10

Ongoing experiments

Considerations in test program

- tsunami heights
 - the tsunami heights (*H*) are the same order to the sea-dyke height above the sea level (*Hc*)
- The sea-dyke
 - front and rear slopes
- The slope behind the sea-dyke

Disaster cases of coastal structures by tsunamis (Yamamoto et. al.,2006)

Date of disaster	Coasta1 name	Structure type	Damage 1eve1	Type of destructive force	Crown height (m)	Tsunami height (m)	Mean overflow rate (m³/m/s)
Hokkaido Prefectur e (1993 July 12)	Hirahama, Taisei-cho	Revetment (crown covered with concrete)	Complete destructio n	By incident tsunami	6.00	8.0	4.87
	Umikurimae, Okushiri- cho	Self-supported dike	Complete destructio n	pressure By incident tsunami	5.30	8.7	10.79
	Monai, Okushiri- cho	Self-supported revetment	Complete destructio n	pressure By incident tsunami	6.50	21.0	95.07
	Aonae, Okushiri- cho	Self-supported revetment	Complete destructio n	By tsunami pressure from back coast	4.50	12.4	38.23

Date of disaster	Coastal name	Structure type	Damage level	Type of destructive force	Crown height (m)	Tsunami height (m)	Mean overflow rate (m³/m/s)
Akita Prefectur e facing the Nihon sea (1983 May 26)	Kodomari fishery harbor	Block-type revetment (crown not covered)	Complete destruction	By return flow	4.00	5.3	2.55
	Todoroki fishery harbor	Self-supported revetment	Partial destruction	By return flow	3.70	4.0	0.28
	Iwadate fishery harbor	Self-supported revetment	Partial destruction	By incident tsunami pressure	4.65	7.0	6.12
	Iwadate fishery harbor	Self-supported revetment	Partial destruction	By incident tsunami pressure	5.65	8.8	9.81
	Minehama	Self-supported revetment	Partial destruction	By incident tsunami pressure	5.30	6.9	3.52
	Kotohama	Reinforced concrete revetment (the	Complete destruction	Destruction of front face and	5.25	8.5	10.09
		covered)		OULIIOW OI			

Tainan Hydraulics Lab. (THL)

1

- A solitary wave propagate on an inclined beach & a sea-dyke
 - The run-up heights, mean overflow rate
 - The pressure distribution on the structure

• The flow field

Time series of the overflow depth, pressure and velocity on top of the sea-dyke

The overflow

Future works

To use the super tank for larger scale tests on

Thank you !

Tainan Hydraulics Lab. (THL) http://www.thl.ncku.edu.tw

Seafloor bathymetry around TAIWAN (source: NCOR, TAIWAN)

The worries

- Can it happen here ?
- How bad can it be if it can happen here ?
- How about the defense capability of the existing coastal defense works ?

 $q = 0.55 \times \sqrt{gh} \times h \ (m^3/m/s)$

Where *h* is the overflow height

• by Takanashi and Yamamoto (2005) $u=1.1\sqrt{gH}$

• by Jizuka and Matsutomi (2000)

<u>EL.-2</u>.00M

A typical sea-dyke profile of the west coast

Design Wave condition VS. solitary waves

sea level: E.L. +2.2 m crown level: E.L. +5.0 m

- Design wave
 - $H_{1/3}$ =6.0 m, $T_{1/3}$ =12.0 s
 - overflow:

 $-0.045 \text{ m}^3/\text{s/m}$

- Solitary wave
 - H₀=6.0 m
 - overflow: -0.987 (2.041) m³/s/m
 - H₀=4.8 m -0.673 (1.237) m³/s/m
 - H₀=3.6 m -0.203 (0.827) m³/s/m
 - H₀=2.4 m -0.173 (0.607) m³/s/m
 - H₀=1.2 m
 - -0.162 (0.297) m³/s/

Tainan Hydraulics Lab. (THL)

• tolerance:

 $-0.050 \text{ m}^3/\text{s/m}$

莯

