Pingtung Earthquakes of Taiwan and Geodynamics

David A Yuen Boris Kaus Yingchun Liu Yaolin Shi Erik Sevre

Outline

- Pingtung Earthquake Event, Dec. 26, 2006
- The Depths of Epicentres and seismic constraints
- Geodynamical Modelling

The Focal Mechanisms of Two Earthquakes

12:26:00 PM	FIRF						
	Lat	Long	Magnitude	Depth (Km)	Strike	Dip	Slip
Harvard	21.83N	120.39E	7.0	22.5	330	58	-93
USGS	21.813N	120.530E	7.1	5	334	83	-98
BATS	21.89 N	120.56 E	6.7	44.3	349	53	-54
12·34PM					Sund Still		A Constant
Havard	22.03N	120.41E	6.9	33.8	151	55	4
BATS	21.95N	120.39E	6.5	30	144	26	-12
						6	B

Which epicentral depth is reasonable? Why ??

Here we take one way to check it:

Seismic Profiles across Taiwan and the Western Philippine Sea

The Model of Crust

4	int: no_model_lines;							
# no ∩	depth[km]	vp[km/s] 5.8010	vs[km/s] 3 200	rho[kg/m^3] 2700_0	eta[Pa*s] 1 0E+30	relax 0 000		
1	10.000	6.458	3.500	2800.0	1.0E+20	0.000		
∠ 3	120.000	7.958	4.600	2900.0	1.0E+20 1.0E+25	0.000		
3 4	120.000 120.000	7.958 7.358	4.600 4.300	2900.0 3000.0	1.0E+25 1.0E+18	0.000 0.000		

The displacement field of Uz

Maximum Displacement Uz in vertical direction from the focal mechanism of three official websites: USGS: Uzmax = 1.12m Uzmin= -0.8798 m HCMT: Uzmax = 0.616m Uzmin= -0.085m

BATS : Uzmax = 0.1541m

Uzmin= -0.03611 m

2006/12/26 Pingtung EQ Coseismic Displacement from GPS

Broken Cable

CS Lee, SK Hsu, HW Chen, F Wu, 2007

Conclusion(1)

The first earthquake is normal fault.

From the report of website, only half a meter wave height was heading for Philippines. The earthquakes could have induced the landslide. Above all, the focal mechanism of BATS is more reasonable. The epicenter could be 40km deep.

Geophysical Background (1)

Chang, et al, 2001

The Geodynamic model

Why this earthquake occurred in the lower Moho, or upper mantle? Not the upper hard crust?

Seismic Profile Geophysical Background (2)

Based on C. P. CHANG et al., 2005

The Numerical Model

Numerical Method - SloMo

- 2D/3D Thermo-mechanical Lagrangian FEM.
- Rheology: Maxwell viscoelastic with Mohr Coulomb non-associated plasticity.
- Bulk deformation: compressible elastic/incompressible viscous
- Velocity-Pressure formulation (Q₁P₀⁺ elements).
- Implicit plasticity.
- Markers to track material properties.
- Remeshing for large deformations.
- "True" free surface.

$$\dot{\epsilon}_{ii} = -\frac{1}{K} \frac{\partial P}{\partial t}$$

$$\frac{\partial \sigma_{ij}}{\partial x_j} = \rho g_i$$

$$\rho c_p \frac{DT}{Dt} = \frac{\partial}{\partial x_i} \left(k_T \frac{\partial T}{\partial x_i} \right) + \rho H + \chi \tau_{ij} \left(\dot{\epsilon}_{ij} - \dot{\epsilon}_{ij}^{el} \right)$$

$$\dot{\epsilon}_{ij} = \dot{\epsilon}_{ij}^{vis} + \dot{\epsilon}_{ij}^{el} + \dot{\epsilon}_{ij}^{pl} = \frac{\tau_{ij}}{2\mu} + \frac{1}{2G} \frac{D\tau_{ij}}{Dt} + \dot{\lambda} \frac{\partial Q}{\partial \sigma_{ij}}$$

$$\mu = B \dot{\epsilon}_{II}^{\frac{1-\pi}{n}} e^{\frac{Q_0}{nRT}}$$

$$\rho = \rho_0 \left(1 - \alpha (T - T_0) \right)$$

$$Q = \tau^* - \sigma^* \sin(\psi)$$

$$F = \tau^* - \sigma^* \sin(\phi) - C \cos(\phi)$$

$$\dot{\varepsilon}_{ij} = \dot{\varepsilon}_{ij}^{vis} + \dot{\varepsilon}_{ij}^{el} + \dot{\varepsilon}_{ij}^{pl}$$

$$\underbrace{\frac{1}{2G} \frac{D\tau_{ij}}{Dt}}_{\frac{1}{2\mu}\tau_{ij}} \frac{1}{\frac{\lambda}{2\mu}\tau_{ij}} \dot{\lambda}\tau_{ij}}_{\dot{\lambda} = 0. \text{ if } \tau \leq \sigma_{i}}$$

Model setup

Interest:

Stress-field caused by mantle flow and mantle/lithosphere interaction (compressional/extensional)
 Effect of rheological layering?
 Slab break-off, weak lower crust?

Therefore:

Models ran for very short timescale only (to ensure isostatic re-equilibrium).

«Maxwell timescale artificially reduced (<30 years).

Limitation:

Viscosity constant in each of the layers (Tdependent underway, not finished yet).

Horizontal Normal Stress Field

-> Extensional stresses below the Moho due to bending of subducting (oceanic) slab.

Continuous lower crust

With weak crustal wedge

Weak crustal wedge & overriding PSP (8cm/yr)

With overriding PSP (8 cm/yr)

0 cm year

8 cm year

Phase distributions and velocity

0 Width [km]

Depth [km]

max Vz=11 cm/yr

With overriding PSP & weak ML

Slab Breakoff (cut-off @ 100 km)

Vertical slab

Vertical weak slab

Strong lower crust

Strong LC & crustal wedge

Strong LC & crustal wedge & overriding PSP

111111111111

Strong LC, overriding PSP (8cm/yr)

Strong LC, overriding PSP (8cm/yr), weak slab

Strong LC & slab breakoff

Strong LC, weak slab (Crème Brulee)

Strong LC, weak vertical slab

Historical Earthquakes Distribution

EHB Seismicity (1964-2005)

Engdahl, E.R., Van der Hilst, R.D. & Buland, R.P., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, *Bull. seism. Soc. Am.*, 88, 722–743.

Geological Tectonics (1)

Conclusion 1

- In this case, the lower mantle layer must be decoupled from the upper crust by a very soft layer (lower crust). The upper crust is in compressional environment.
- The upper mantle lithosphere is extensional because of bending due to subducted slab, and because decoupled with upper crust compression

Conclusion 2

 Normal faulting EQs below Moho below southern Taiwan can be explained by slab subduction of the oceanic slab attached to the China plate.

A weak lower crust & sufficiently strong mantle lithosphere are required

To be done

 Include thermal effects (modifies the result but is unlikely to change the main conclusions).

Hanks for your attention

