Tsunami hazard risk and early warning projects at Global Geophysics Institute, Vietnam

presented by Dr Kelvin Berryman, GNS Science, New Zealand k.berryman@gns.cri.nz

on behalf of Prof. Bui C. Que, Director of Global Geophysics Institute, Hanoi

Outline of presentation

- roles and responsibilities of Global Geophysics Inst. (GGI) for tsunami in Vietnam
- some current activities hazard risk & early warning centre
- why New Zealand participation?

Roles & responsibilities of GGI for tsunami in Vietnam

- 1. Tsunami and earthquake hazard risk mapping in Vietnam
- 2. Establishment of earthquake and tsunami information and early warning centre

Government regulation dated 16/11/2006

- The regulation instructs GGI to develop an earthquake information and tsunami warning system for Vietnam
 - This regulation applies to these events:
- a) Earthquakes of $M \ge 3.5$ in the territory of Vietnam or in the coastal area;
- b) Volcanic eruptions or earthquakes of $M \ge 6.5$ in the South China Sea;
- c) Tsunami that can cause damage to the coast of Vietnam

stage 1: designing the network, building stations, and selecting equipment supplier (2008-2009)

- Site survey
- Designing the network
- Selecting the equipment supplier

stage 2: Installing, training and operating (2010-2011)

- Receiving equipment
- Training
- Installation
- Operational

Development of a Tsunami Early Warning System for Vietnam

This project is in planning stages at present

The Tsunami Warning Centre will have the ability to:

- Receive tsunami warning messages from the International Tsunami Warning Centres (PTWC, JMA)
- Receive national broadband seismograph network data in real-time and use this to provide a national earthquake information capability by locating and estimating size and likely tsunami generation potential of earthquakes
- Receive national sea level (tsunami) network data in real-time to confirm tsunami generation, and give the "all clear" once the tsunami waves have passed
- Receive international sea level data and seismic data in real time to provide a regional (less than three hours tsunami travel time) earthquake location and characterisation capability. International data exchange is required to meet this aim
- Use the information from a catalogue of pre-calculated water models for identified seismic sources. This requires the identification of all likely tsunami sources in advance

Proposed seismic network

Station spacing of 100-200 km
36 stations covering the country
Real-time datastream

Seismic & tsunami monitoring network

Central station in Hanoi

New Zealand connection to South China Seas tsunami hazard risk & early warning systems is in collaoration with GGI, Vietnam

 based on a 2 year, capacity-building project funded from New Zealand to assist GGI fulfilling roles and responsibilities assigned by Vietnam government

 GNS Science led a New Zealand-wide tsunami risk assessment in 2005 (Berryman et al, 2005 - http://www.civildefence.govt.nz/memwebsite.nsf)

 GNS Science via GeoNet Project (<u>http://www.geonet.org.nz</u>) is responsible for the earthquake & GPS monitoring network and advising Civil Defence authorities on tsunami early warning in New Zealand

Subduction margins in the circum-Pacific region.

Monte Carlo Sampling using Probabilistic Methodology for Tsunami Risk Modelling

For each of 109 sources (5 distant, 104 local/regional)
For each event during 100,000 years
For each of 22 coastal locations
Calculate wave height, inundation, damage, deaths, injuries

embrace uncertainty & think about frequency as well as magnitude !!!

Data plotted above		50 yrs	100	200	500	1000	2500
Height (m	84%	4.4	6.2	8.3	11.6	14.5	18.5
	50%	2.9	4.2	5.7	8.0	9.9	12.5
	16%	2.0	2.9	4.0	5.6	6.9	8.6
Deaths	84%	46	160	520	2100	5100	12,000
	50%	11	37	110	440	1200	3100
	16%	1	11	32	110	240	640

eaggregation	4.2m (100 yrs)	8.0m (500 yrs)	Delay	100 yrs	500 yrs
S America	47%	53%	> 3 hr	47%	53%
Subduction Zone	48%	42%	1-3 hr	48%	42%
Local faults	5%	5%	< 1 hr	5%	5%

Benefit of Warnings

No warning

90% effective for distant, 10% for local sources

99% effective for distant, 20% for local sources

 "effective" warning has different requirements in different parts of New Zealand

