

Numerical Simulation of Tsunami Propagation and Runup: Case study on the South China Sea

By Phung D. Hieu

Center for Marine and Ocean-Atmosphere Interaction Research, Vietnam Email: phungdanghieu@vkttv.edu.vn; hieupd@vnu.edu.vn

OBJECTIVES

1) Develop a Numerical Model for Simulation of Long Wave Propagation and Run up on beaches

2) Test the Model with Laboratory experimental data

3) Simulation of Tsunami on the South China Sea

VOF – Like Technique $FLUX^{y}_{i,j+1/2}$ $FLUX^{x}_{i+1/2,j}$ $FLUX_{i-1/2,j}^{x}$ $VOF = (h + \eta)\Delta x \Delta y$ $VOFOUT = FLUX_{i+1/2, j}^{x} + FLUX_{i, j+1/2}^{y}$ $FLUX^{y}_{i,j-1/2}$ Limitation Coefficient (if VOFOUT>VOF) VOFOUT VOF C_{I} $FLUX_{i+1/2,j}^{x} = FLUX_{i+1/2,j}^{x} / C_{l}$ Need to adjust the outgoing fluxes $FLUX_{i, i+1/2}^{x} = FLUX_{i, i+1/2}^{x} / C_{l}$

Calculation of Numerical Fluxes

 Godunov method: HLL (Harten, Lax and Vanleer) Rieman Solver for Calculation of Numerical Fluxes at cell Interfaces of Shallow water Equation (Torro, 1999);
Muscl-Hancook method and Roe Limiter to get the second order of accuracy in space and time (Toro, 1999);

3) Crank-Nicholson Scheme of the Finite difference method for the Boussinesq Term

MODEL TEST:

TEST 1: Solitary Wave Run up on a Plane Beach (Synolakis's Exp.,1987)

TEST 2: Shock Wave Run up on a non-uniform Beach

TEST 3: Solitary Wave run up on a Conical Island (Briggs et al.'s Exp, 1995)

TEST1: SOLITARY WAVE RUN UP ON A PLANE BEACH

Experimental condition

Test1 - Results: WATER SURFACE DISTRIBUTION

Test1 - Results: WATER SURFACE DISTRIBUTION

X/h

Test1 - Results: WATER SURFACE DISTRIBUTION

x/d

Comparison with other numerical results

CENTER FOR MARINE AND OCEAN - ATMOSPHERE INTERACTION RESEARCH

Vietnum Institute of

CENTER FOR MARINE AND OCEAN - ATMOSPHERE INTERACTION RESEARCH

Vietnum Institute of

Test3-Results: WATER SURFACE ELEVATION

CENTER FOR MARINE AND OCEAN - ATMOSPHERE INTERACTION RESEARCH

Vietnum Institute of

Meteorology Hydrology and Environment

Test3-Results: WATER SURFACE ELEVATION

Remarks

• The Numerical Model can simulate well the propagation of long wave and run up on a sloping beach;

• The Boussinesq Term added to the shallow water model can improve significantly simulated results for water surface elevation of long waves;

 The numerical model should be considered to the next step of verification with field case studies;

SIMULATION OF TSUNAMI ON THE SOUTH CHINA SEA

- Consider Earthquake with Magnitude M=8.5 at the Manila Trench;
- Consider Tsunami-Travel Time;
- Maximum Wave Height Distribution;

Simulation Condition

Topography: ETOPO 2

5 (Sea) 22

Mesh: Regular

Initial condition: OKADA Model (1985) with the earthquake parameters:

Scenarios	Magnitude	Strike (Deg)	Dip (Deg)	Rake (Góc trượt) (Deg)	Depth of Epice n tre (km)	Length of Fault (km)	Width of Fault (km)
1	8.5	177	15	90	18	313	68
2	9.0	87	15	90	24	646	101

CENTER FOR MARINE AND OCEAN - ATMOSPHERE INTERACTION RESEARCH

い場つ

REMARKS

Boussinesq Equation is a good choice to improve simulation results for long wave propagation including tsunami;

Summi travel time in the South China Sea is very short, only 20 minutes to reach the Taiwan Coast, 1.5 hours to Vietnam coast and immediately to Philippine Coast for the case of earthquake at the Manila Trench occurs;

It is worth to build up maximum tsunami waning maps in advance before a real tsunami-earthquake occurs in the South China Sea in order to understand which area is potentially suffer from a destructive tsunami;

Thank you very much for your attention!

(earthquake data from 1600-2005, 5.0<M<9.0)

LogL = 0.55M – 2.19, 6.7≤M≤9.3

LogS = 0.86M – 2.82 6.7≤M≤9.2

Relation between earthquake and rupture parameters