Modeling wave run-up and inundation in Singapore

Zhenhua Huang, Xiaozhen Liu, Felicia Shaw and Soon Keat Tan

School of Civil and Environmental Engineering Nanyang Technological University, Singapore

South China Sea Tsunami Workshop 5-7, December 2007, Taiwan

Operational Tsunami Prediction and Assessment System (OTPAS)

- Two Singapore teams: NUS team and NTU team
- NTU is responsible for two items:
 - Tsunamigentic earthquake description and forecast
 - Modelling of tsunami wave run-up and inundation for Singapore.

Potential earthquake sources for Singapore

TECHNOLOGICAL

IVERSIT

Manila Trench

Objectives

Development of run-up, wave dissipation and inundation models integrated with tsunami propagation model

- Effects of sediment entrainment on wave dissipation
- Movable seabed and shoreline change
- Variable friction coefficient
- Inundation map and evacuation plan

Fine grid for inundation

Benchmark tests with existing Inundation Models

- MOST (ComMIT, NOVAA)
- TUNAMI-N2 (Tohoku University, Japan)
- ComCot (Cornell Model, US)
- DHI MIKE-21 (DHI model)
- Others

MOST and ComMIT

- ComMIT is used for the inundation study
- Rupture length of 1000km was assumed, equivalent to Mw9.3 earthquake.
- 520 x 360 grids are used for grid A , B and C
- 37 hours of physical time were modeled. About 8 hour-computer time.
- Dry land depth of inundation<0.1m
- Time step=2.52s

Grid A, B and C

	A-grid	B-grid	C-grid
Dimensions	520 x-points (lon) by 360 y- points (lat)	520 x-points (lon) by 360 y- points (lat)	520 x-points (lon) by 360 y- points (lat)
Latitude Scope	0.8957 degrees to 2.3317 degrees	1.0557 degrees to 1.7737 degrees	1.1357 degrees to 1.4947 degrees
Longitude Scope	103.3606 degrees to 105.4366 degrees	103.5206 degrees to 104.5586 degrees	103.6006 degrees to 104.1196 degrees
Latitude spacing even, delta-			
Latitude	445.2800 meters	222.6400 meters	111.3200 meters
Maximum depth	-63.0 meters	-44.0 meters	-199.3 meters
Maximum height	651.0 meters	424.0 meters	185.9 meters
Maximum timestep			
(CFL condition)	17.9 seconds	10.ri7 seconds	2.52 seconds
TECHNOLOGICAL			

Locations of virtual gages

Maximum wave height map

Wave height near Marina Bay

Wave height in Johor Strait

Hours since event [hr]

Wave height near Changi Airport

Inundation areas

Johor-Singapore Causeway

Tropical Storm Vamei (Dec 2001)

An area of convection 230 miles (370 km) east of <u>Singapore</u> developed from a monsoon trough disturbance under upper level divergence near the equator on <u>December</u> <u>25</u>.

Vamei had reached typhoon strength early on <u>December 27</u>, only 12 hours into its existence. Upper-level steering flow forced the storm westward, where the compact system reached a ship-reported peak of 87 mph sustained winds and gusts reaching 120 mph

Typical strong wind is about 33km/hr

Wave heights on two sides of Johor-Singapore Causeway

Excess load on Johor-Singapore Causeway

Conclusion

For the hypothetical Manila Trench rupture

- The arrival time is about 12 hours
- The maximum wave height is in general less than 1 m
- The maximum wave height of about 1m occurs in Johor Strait
- The inundation area is small. The inundation areas are small, isolated patches.
- There may be a tsunami induced excess load on the causeway in Johor Strait.

Thanks for your attention

ComMIT Input parameters

	Total Mag	gnitude:	9.3	Mw
Name	%	Mag	Slip	
wpsza1	1.1	6	5.00	
wpszb1	1.1	6	5.00	
wpsza2	2.1	1	10.00	
wpszb2	2.1	1	10.00	
wpsza3	4.3	2	20.00	
wpszb3	4.3	2	20.00	
wpsza4	5.3	2	5.00	
wpszb4	5.3	2	5.00	
wpsza5	6.4	3	0.00	
wpszb5	6.4	3	0.00	
wpsza6	8.5	4	0.00	
wpszb6	8.5	4	0.00	
wpsza7	8.5	4	0.00	
wpszb7	8.5	4	0.00	
wpsza8	6.4	3	0.00	
wpszb8	6.4	3	0.00	Š.
Add/Del	Jump:	Current	Site	

0.0010	Minimum amp. of input offsho
0.5	Minimum depth of offshore (r
0.1	Dry land depth of inundation (
0.0002	Friction coefficient (n**2)
V	Let A-Grid and B-Grid run up
30.0	Max eta before blow-up (m)
2.52	Time step (sec)
40000	Total number of time steps ir
1	Time steps between A-Grid c
1	Time steps between B-Grid c
20	Time steps between output s
200	Time steps before saving firs
1	Save output every n-th grid pc

DART Stations

Mercator Projection Central Meridian: 150 W WGS 1984

DART and Tsunameter Stations

(As of November, 2007)

DART II

